000 04084nam a22004695a 4500
001 143-2020
003 CL-ChUAC
005 20210615150855.0
006 m o d |
007 cr cn|||||||||
008 210615s2020 ne |||||s|||| 000 ||eng d
022 _a0045-7825
040 _aCL-ChUAC
_bspa
_cCL-ChUAC
041 _aeng
_beng
_feng
245 1 0 _aSensitivity analysis of a strongly-coupled human-basedelectromechanical cardiac model: Effect of mechanical parameters onphysiologically relevant biomarkers
_cF. Levrero-Florencio ; F. Margara ; E. Zacur ; A. Bueno-Orovio ; Z.J. Wang ; A. Santiago ; J. Aguado-Sierra ; G. Houzeaux ; V. Grau ; D. Kay ; M. Vázquez ; R. Ruiz-Baiere ; B. Rodriguez
336 _2rdacontent
_atext
_btxt
337 _2rdamedia
_aunmediated
_bn
338 _2rdacarrier
_avolume
_bnc
504 _aincluye referencia bibliográfica (páginas 28-31)
520 3 _aThe human heart beats as a result of multiscale nonlinear dynamics coupling subcellular to whole organ processes, achievingelectrophysiologically-driven mechanical contraction. Computational cardiac modelling and simulation have achieved a greatdegree of maturity, both in terms of mathematical models of underlying biophysical processes and the development of simulationsoftware.In this study, we present the detailed description of a human-based physiologically-based, and fully-coupled ventricularelectromechanical modelling and simulation framework, and a sensitivity analysis focused on its mechanical properties. Thebiophysical detail of the model, from ionic to whole-organ, is crucial to enable future simulations of disease and drug action. Keynovelties include the coupling of state-of-the-art human-based electrophysiology membrane kinetics, excitation–contraction andactive contraction models, and the incorporation of a pre-stress model to allow for pre-stressing and pre-loading the ventricles ina dynamical regime. Through high performance computing simulations, we demonstrate that 50% to 200%−1000% variationsin key parameters result in changes in clinically-relevant mechanical biomarkers ranging from diseased to healthy values inclinical studies. Furthermore mechanical biomarkers are primarily affected by only one or two parameters. Specifically, ejectionfraction is dominated by the scaling parameter of the active tension model and its scaling parameter in the normal direction(kort 2); the end systolic pressure is dominated by the pressure at which the ejection phase is triggered (Pej) and the complianceof the Windkessel fluid model (C); and the longitudinal fractional shortening is dominated by the fibre angle (φ) andkort 2.The wall thickening does not seem to be clearly dominated by any of the considered input parameters. In summary, this study presents in detail the description and implementation of a human-based coupled electromechanicalmodelling and simulation framework, and a high performance computing study on the sensitivity of mechanical biomarkers tokey model parameters. The tools and knowledge generated enable future investigations into disease and drug action on humanventricles
650 4 _aCardiac electromechanics
650 4 _aSensitivity analysis
650 4 _aMultiscale simulations
650 4 _aFinite element method
650 4 _aHigh-performance computing
700 1 _aLevrero-Florencio, F.
_ecoautor
700 1 _aMargara, F.
_ecoautor
700 1 _aZacur, E.
_ecoautor
700 1 _aBueno-Orovio, A.
_ecoautor
700 1 _aWang, Z.J.
_ecoautor
700 1 _aSantiago, A.
_ecoautor
700 1 _aAguado-Sierra, J.
_ecoautor
700 1 _aHouzeaux, G.
_ecoautor
700 1 _aGrau, V.
_ecoautor
700 1 _aKay, D.
_ecoautor
700 1 _aVázquez, M.
_ecoautor
700 1 _aRuiz-Baier, R.
_ecoautor
700 1 _aRodriguez, B.
_ecoautor
773 0 _dÁmsterdam, Países Bajos
_gVolume 361, 1 April 2020, 112762
_tComputer Methods in Applied Mechanics and Engineering [artículo de revista]
856 4 1 _uhttp://bibliorepositorio.unach.cl/handle/BibUnACh/1811
942 _2ddc
_cAREV
999 _c2366467
_d2366467