Imagen de Google Jackets

Rotation-based mixed formulations for an elasticity-poroelasticity interface problem Verónica Anaya ; Zoa de Wijn ; Bryan Gómez-Vargas ; David Mora ; Ricardo Ruiz-Baier

Colaborador(es): Tipo de material: TextoTextoIdioma: Inglés Idioma del resumen: Inglés Tipo de contenido:
  • text
Tipo de medio:
  • unmediated
Tipo de soporte:
  • volume
Tema(s): Recursos en línea: En: SIAM Journal on Scientific Computing [artículo de revista] Vol. 42, No. 1, pp. B225--B249Resumen: In this paper we introduce a new formulation for the stationary poroelasticity equations written using the rotation vector and the total fluid-solid pressure as additional unknowns, and we also write an extension to the elasticity-poroelasticity problem. The transmission conditions are imposed naturally in the weak formulation, and the analysis of the effective governing equations is conducted by an application of Fredholm's alternative. We also propose a monolithically coupled mixed finite element method for the numerical solution of the problem. Its convergence properties are rigorously derived and subsequently confirmed by a set of computational tests that include applications to subsurface flow in reservoirs as well as to dentistry-oriented problems.
Tipo de ítem: Artículo de Revista
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

incluye referencia bibliográfica (B247-B249)

In this paper we introduce a new formulation for the stationary poroelasticity equations written using the rotation vector and the total fluid-solid pressure as additional unknowns, and we also write an extension to the elasticity-poroelasticity problem. The transmission conditions are imposed naturally in the weak formulation, and the analysis of the effective governing equations is conducted by an application of Fredholm's alternative. We also propose a monolithically coupled mixed finite element method for the numerical solution of the problem. Its convergence properties are rigorously derived and subsequently confirmed by a set of computational tests that include applications to subsurface flow in reservoirs as well as to dentistry-oriented problems.

No hay comentarios en este titulo.

para colocar un comentario.

Con tecnología Koha